Predefinição:NumBlk

De Wiki Coolab
Revisão de 02h17min de 4 de maio de 2008 por NumBlk>Justin545 (+category 'Formatting template')
Ir para navegação Ir para pesquisar

This template creates a numbered block which is usually used to number mathematical formulae.

{{{1}}}{| width="100%" border="0"
| {{{2}}}
| width="10%" align="right" | ({{{3}}})
|}

Parameter

All parameters of this template are required.
{{{1}}}: Specify indentation. The more colons (:) you put, the further indented the block will be. This parameter can be empty if no indentation is needed.
{{{2}}}: The body or content of the block.
{{{3}}}: Specify the block number.

Example

{{NumBlk||<math>\bold{a}(t)=\frac{d}{dt}\bold{v}(t)</math>|3.5}}
[math]\bold{a}(t)=\frac{d}{dt}\bold{v}(t)[/math] (3.5)
{{NumBlk|:|<math>\bold{a}(t)=\frac{d}{dt}\bold{v}(t)</math>|1}}
[math]\bold{a}(t)=\frac{d}{dt}\bold{v}(t)[/math] (1)
{{NumBlk|::|<math>\bold{a}(t)=\frac{d}{dt}\bold{v}(t)</math>|13.7}}
[math]\bold{a}(t)=\frac{d}{dt}\bold{v}(t)[/math] (13.7)
{{NumBlk|:::|<math>\bold{a}(t)=\frac{d}{dt}\bold{v}(t)</math>|1.2}}
[math]\bold{a}(t)=\frac{d}{dt}\bold{v}(t)[/math] (1.2)
{{NumBlk|:|<math>\mathbf{a}(t)=\lim_{\Delta t \to 0}\frac{\mathbf{v}(t+\Delta t)-\mathbf{v}(t)}{\Delta t}
=\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}</math>|Eq. 5}}
[math]\mathbf{a}(t)=\lim_{\Delta t \to 0}\frac{\mathbf{v}(t+\Delta t)-\mathbf{v}(t)}{\Delta t} =\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}[/math] (Eq. 5)
{{NumBlk|:|''For any consistent formal, computably enumerable theory that proves basic arithmetical truths, an arithmetical statement that is true, but not provable in the theory, can be constructed. That is, any effectively generated theory capable of expressing elementary arithmetic cannot be both consistent and complete.''|6}}
For any consistent formal, computably enumerable theory that proves basic arithmetical truths, an arithmetical statement that is true, but not provable in the theory, can be constructed. That is, any effectively generated theory capable of expressing elementary arithmetic cannot be both consistent and complete. (6)